
Product development
White paper
June 2009

A new approach to verifying and
validating medical device development.
Automating product development and compliance processes
using IBM Rational software

Irv Badr, senior manager, Rational software,
IBM Software Group

Introduction

The list of features in medical devices is rapidly rising: Even the simplest of
medical devices—such as diagnostic and monitoring systems—house more and
more system components, which add greater functionality to the device at a low
cost. But by adding components, device software becomes complex and burdens
compliance testing and premarket certification activities, such as 510(k) submis-
sions mandated by the U.S. Food and Drug Administration (FDA).

However, you can address those issues by using a model-based verification and
validation process in your medical device development. First, this process can
help you better manage the complexity of the software by abstracting it as
a model. Second, the process can help you verify and validate an evolving
system by leveraging an executable model earlier in the development process.
Last, the early validation and verification of a system can help you reduce the
total development time and shorten the FDA submission process, a required
step for bringing a device to the U.S. marketplace.

Addressing challenges unique to the medical device industry

The typical workflow of developing embedded software products is often
requirements gathering, analysis, system design, detailed design, testing and
project management. But in the medical device industry, there is an addi-
tional step: compliance. The FDA regulates products developed for the U.S.
marketplace through Quality System Regulations (QSR) 21 Code of Federal
Regulations (CFR) Part 820 §30, which essentially requires:1

Proper documentation to be maintained in a Design History File (DHF).•	
Compliance with Title 21 CFR Part 11, which governs the use of electronic •	
signatures in DHFs.
International marketplaces to comply with International Organization for •	
Standardization (ISO) 13485:2003 and meet the European Union Medical
Device Directive (EU MDD) 93/42 regulations.
Compliance with Current Good Manufacturing Practices (CGMP) and Good •	
Documentation Practices (GDP), both dictated by the FDA.

Contents

A new approach to verifying and
validating medical device development.
Page 2

2 Introduction

2 Addressing challenges unique

to the medical device industry

3 Traditional approaches to

device compliance

3 System design verification

4 System design validation

5 Model-driven verification and

validation

8 Automated verification and

validation approach in action

9 Development and management

tools for automated processes

10 An improved, lower-cost

development process

A new approach to verifying and
validating medical device development.
Page 3

Highlights
Traditional approaches to device compliance

To meet compliance goals, medical device development teams create a DHF at
the beginning of a project. The file may contain informal, handwritten require-
ments and design notes as well as printouts and source-code excerpts of formal
architecture and design documents. Some source-code-centric development teams
also include requirements documents, ad hoc formal design documents and
source-code listings that reflect how the teams are implementing requirements
as source code. This workflow helps teams establish traceability between require-
ments and their exact implementation, as required by QSR. The traceability can
prove that the device is being used for its intended purpose; however, the method
of establishing traceability is not mandated. Because source code is readily avail-
able, many teams use it for traceability and as the medium for representing
system architecture and design. This method is common among teams that lack
a formal modeling approach in the development process.2

System design verification

Figure 1 shows a recommended development process from the FDA Design
Control Guide.3 Note that QSR compliance can be achieved in conjunction
with GDP compliance by adhering to the iterative, or waterfall, development
steps shown. Testers can perform system verification against the requirements
by measuring design output against design input.

Design input comprises specifications defined by user requirements, which
identify the intended use of the device. It usually includes formal or semiformal
text documents and a few models reflecting a set of specifications against which
the system is to be built. Design output, in turn, comprises procedures defined
by the device maker that help ensure that the completed prototype aligns with
the design input. It may include, in the case of embedded software, a list of the
source code that belongs to the application.

Traditionally, development teams

have used source code to establish

traceability between requirements

and their implementation.

A new approach to verifying and
validating medical device development.
Page 4

Highlights
Ultimately, development teams need to ensure that they implement specifications
and meet design goals, so there is a need for traceability between the input and
output milestones.

User needs

Validation

Design input

Design process

Design output

Medical device

Veri�cation

Design reviews

Figure 1: A design verification step verifies the design output against the design input.

Design input and output milestones are integral parts of the medical device
development process. Because the milestones are applied to a large number
of devices, no governing body specifies or mandates which design verification
methods to use. As a result, device makers use an array of tools and processes
for this purpose and rely on documents and source-code listings as described
for design input and output.

System design validation

Because many teams consider source code to be the ultimate measure of a
system’s implementation status, they often traverse the source code to predict
the final behavior of the actual device. In this source-code-centric approach,
teams execute the application on the actual device and step through its lines of
source code to observe the resulting system behavior and validate the system.

Because development teams need

to ensure that they implement speci-

fications and meet design goals, they

must verify the device by measuring

design input against design output.

A new approach to verifying and
validating medical device development.
Page 5

Highlights
While effective, this method of validating the system has proved to be costly and
error prone. Unit testing the evolving system on the target device can be cum-
bersome and slow. Further, it may not be possible to run the device through all
intended use scenarios without incurring heavy expenses or logistical obstacles.
For example, incomplete or nonexistent hardware may hamper final system test-
ing on the device. Moreover, an incomplete platform may render faulty results
for the tested application.

As software and system bugs are found and corrected during unit testing, teams
may need to update associated design and requirements to reflect the changed
source code. Depending on the size of the application, the updates may be time
consuming and susceptible to errors. And some changes could be missed, caus-
ing an incorrect mismatch between the DHF and the implemented system.

Model-driven verification and validation

Neither internal design controls nor QSR require that you actually operate a
medical device to verify and validate its system. As far as the FDA is concerned,
collected system data can prove the intended use of the device. This data can
be collected from the actual device as well as from a simulated execution of
the device—in fact, automated application development tools offer virtually
unparalleled efficiency gains.

Because verifying devices by mea-

suring input against output can be

time consuming and error prone, a

better approach to system verifica-

tion is to model and collect system

data to prove the intended use of

the device.

A new approach to verifying and
validating medical device development.
Page 6

Highlights
Figure 2 shows a validation- and verification-based process, which hinges on
iterative development of design output based on design input. The figure also
illustrates auditable traceability between requirements and system validation, and
between architecture and design activities and system verification. Modeling tools
can provide requirements traceability and executable model features automati-
cally.4 They can also report the latest design throughout the product lifecycle.

Additionally, you can leverage an automated requirements management tool to
establish traceability between design components and requirements.

Control
is the binding

element

“You built the right thing”

“You built it right”

Risk m
anagem

ent Qu
ali

ty
 as

su
ra

nc
e

an
d

us
er

 te
st

in
g

Design input

Design output

Validation

Veri�cation

Implementation DHF

Figure 2: In a traditional approach, the validation- and verification-based process hinges on iterative
development of design output based on design input.

In a model-driven process, you can architect and design an application in
the modeling tool.5 You can also automatically generate unit test cases from
design models, as shown in figure 3. Here, models for both the design and the
test case are executable.

In a model-driven approach to

design verification and validation,

you can establish traceability

between design components and

requirements and test the design

in difficult-to-create scenarios.

A new approach to verifying and
validating medical device development.
Page 7

Highlights
First, you want to verify the underlying design, test the design and depict
actual usage scenarios for the device. Most defects and design oversights are
caught during this model verification phase. Unit testing can put the design
through possible scenarios, many of which may be difficult to create on the
actual device.

Change controlRational DOORS

Rational Rhapsody

Rational DOORS

Rational Rhapsody

“You built the right thing”

“You built it right”

Risk m
anagem

ent Qu
ali

ty
 as

su
ra

nc
e

an
d

us
er

 te
st

in
g

Design input

Design output

Validation

Veri�cation

Implementation DHF

Rational Rhapsody
Document generation

Figure 3: Automated requirements management tools can automatically provide requirements traceability
and executable model features and establish traceability between design components and requirements.

Then, if you detect defects or oversights, you can immediately correct them

in the design, thus eliminating the need to manually change the code and the
design documentation. In traditional development, defects are fixed inside the
source code after executing it on the real device. This happens later in the
development process. As a result, traditional system debugging is much slower
than in a model-driven approach because the former requires many more
lines of code—compared to model elements—to implement the same system.

Finally, for system validation, you can automatically trace test cases to the system’s
operational requirements. Requirements traceability features between a formal
requirements management tool and the modeling environment automate the
traceability. In other words, a fully automated validation and verification process
can be established.

Traditional system debugging is

much slower than in a model-

driven approach because the

former requires many more lines

of code—compared to model

elements—to implement the

same system.

A new approach to verifying and
validating medical device development.
Page 8

Highlights
Automated verification and validation approach in action

Figure 4 is a design for a blood oxygen monitor, which uses a finger clip sensor
to measure blood oxygen levels as well as pulse rate. The design shows a state
machine responsible for depacketizing the sensor data. By inputting either real
or simulated sensor data, the state machine can quickly verify correct operation.

Figure 4 also verifies that both oxygen levels and pulse rate are within safe
ranges. This test case is run alongside design verifications to help ensure patient
safety during unforeseen or complex events that are difficult to create. For exam-
ple, unit tests can model the monitor’s behavior in the unlikely event that it doesn’t
detect a pulse while monitoring a patient’s blood oxygen level. To test the monitor
in the same real-world scenario, you would have to actually stop a patient’s heart.

Figure 4: Using model-driven device development, you could model a blood oxygen monitor’s behavior in
the event that it doesn’t detect a pulse while monitoring a blood oxygen level. To test the monitor in the
same real-world scenario, you would have to actually stop a patient’s heart.

Model-driven development is partic-

ularly important for medical devices

because it enables testers to help

ensure patient safety during unfore-

seen or complex events that are

difficult to fabricate.

A new approach to verifying and
validating medical device development.
Page 9

Highlights
Development and management tools for automated processes

IBM Rational® software provides lifecycle development tools that address the
validation and verification requirements of QSR. The IBM Rational DOORS®
requirements management platform can create the design input and manage
system requirements and validation tests as structured and traceable sets of
objects. Additionally, Rational DOORS supports 21 CFR Part 11–compliant
electronic signatures, thereby enabling you to legally and more securely use
electronic records in your design and development processes.

IBM Rational Rhapsody® software can model the medical device through-
out the design process—from defining system development specifications to
deploying software on the device. You can use Rational Rhapsody to model
complex medical devices for an arbitrary combination of embedded and desktop
systems. The embedded system may be a simple blood oxygen monitor or a large
device such as a computed tomography (CT) scanner. Other systems may have
an array of interrelated platforms, including headless desktop computers and
monitoring workstations running conventional operating systems such as Linux®,
UNIX® or Microsoft® Windows® platforms.

Further, Rational Rhapsody supports language-independent and operating
system–independent modeling and can deploy the same models on nearly any
platform. This is described as platform-independent modeling (PIM), where a
single set of models can be used on many different or undefined platforms. PIM
increases productivity by allowing you to leverage designed components in future
generations of unknown platforms. Also, PIM enables you to develop your design
before hardware is available, enabling you to validate functional behavior early
in the design when it is less costly to fix defects. You can then validate the target-
specific characteristics of the design when the hardware becomes available.

Rational lifecycle development soft-

ware automates processes and meets

validation and verification require-

ments from governing bodies.

A new approach to verifying and
validating medical device development.
Page 10

Highlights
For conventional, stand-alone medical devices that typically use a single-board
embedded computer and a realtime operating system, Rational Rhapsody can
provide system architecture and design support as well as automatic source-code
generation. These features help enable rapid retargeting of the model from host
execution to the target device. The tool is capable of supporting out-of-the-box,
realtime operating systems or devices with no operating system. It also provides
target-hosted, design-level debugging, which can prove to be valuable during
the validation and verification process when target-level verification is necessary.

Rational Rhapsody can automate design documentation by extracting infor-
mation from the model through customizable templates. It can then accurately
document the design implementation and provide an integrated paper trail
that originates from requirements management and modeling activities and
follows through to validation and verification.

An improved, lower-cost development process

When designing medical devices, you can address QSR design guidelines
and regulations as well as system and software development best practices.
By using an automated verification and validation approach, you can help
decrease development costs while creating a more reliable medical device with
less risk of failure in the field. Additionally, the automated approach provides
live content for the DHF, which can be automatically produced and managed
with the right development tools.

The suite of Rational lifecycle management solutions is designed to automate the
development process through requirements management; system and software
modeling; and automated, model-based testing tools such as Rational Rhapsody
and Rational DOORS.

By using Rational automated verifi-

cation and validation tools, you can

help decrease development costs

while creating a more reliable medi-

cal device with less risk of failure in

the field.

A new approach to verifying and
validating medical device development.
Page 11

For more information

To learn more about IBM Rational Rhapsody and Rational DOORS software,
contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rhapsody

About the author

Irv Badr has nearly 20 years of development experience in embedded software
and modeling technology. He has designed a communication infrastructure for
medical devices, networking nodes, digital cable transmission and industrial
controls. Irv also served as technical lead for sales and marketing of realtime
operating systems and modeling tools.

After earning his bachelor’s degree in biomedical engineering from the
University of Illinois, Irv went on to earn a technical master of business
administration degree from Northwestern University. Currently, he is a
senior manager for Rational software, a unit of the IBM Software Group.

http://ibm.com/software/rhapsody

 Endnotes

1, 4 Irv Badr, “Developing Platform Independent Embedded Applications,” Embedded Systems Magazine,
 July 2005.

2, 5 Irv Badr, Rapid Development through Agile Modeling, Telelogic, February 2005.

3 U.S. Food and Drug Administration, “Design Control Guidance For Medical Device Manufacturers,”
 March 11, 1997.

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
June 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, Rational, DOORS, and
Rhapsody are trademarks or registered trademarks
of International Business Machines Corporation in
the United States, other countries, or both. If these
and other IBM trademarked terms are marked on
their first occurrence in this information with a trade-
mark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by
IBM at the time this information was published. Such
trademarks may also be registered or common law
trademarks in other countries. A current list of IBM
trademarks is available on the Web at “Copyright
and trademark information” at ibm.com/legal/
copytrade.shtml

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries,
or both.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in
the United States, other countries, or both.

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

RAW14123-USEN-01

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

