IBM Software Thought Leadership White Paper
Life Sciences

Challenges and
opportunities for the
medical device industry

Meeting the new IEC 62304 standard

2 Challenges and opportunities for the medical device industry

Contents
2 Executive summary
2 Changes in the medical device field
3 What is so hard about software?

4 Disciplined agile delivery: Flexibility with more structure

4 Meeting the specification: A look at some of the details

6 Process steps for IEC 62304 compliance
7 Performing the gap analysis
8 Choosing software tools for IEC 62304

11 Conclusion

Executive summary

The recent IEC 62304 standard for medical device software is
causing companies worldwide to step back and examine their
software development processes with considerable scrutiny.
While software development and testing is still an integral part
of overall system design and production, the IEC 62304 stan-
dard focuses on software as a separate life-cycle process with spe-
cific needs for risk management and safety assessment.

With IEC 62304, the world has changed—country by country—
for medical device manufacturers. This doesn’t mean, however,
that complying with IEC 62304 must slow down your medical
device software development. By applying best practices guid-
ance and process automation, companies have a new opportunity
to improve on their fundamental business goals, while getting
through regulatory approvals faster, lowering costs and deliver-
ing safer devices.

This paper will explore what IEC 62304 compliance means for
manufacturers in some detail, and also describe the larger con-
text of systems and software engineering best practices at work
in many of today’s most successful companies.

Changes in the medical device field

The IEC 62304 standard points to the more powerful role that
software plays in the medical device industry. Once hardware
was king. Older systems used software, of course, but it was

not the main focus, and there wasn’t much of a user interface.
Software was primarily used for algorithmic work. Not to overly
generalize, but the focus of management was on building
hardware that worked correctly; software was just a necessary
element of overall implementation. Now with complex Uls,
easy-to-use-at-home medical devices and systems, etc., software
has taken on a much more vital role.

IBM Software 3

"Today, software is clearly where the consumer value lies. The
embedded software is creating competitive differentiation for
manufacturers. Thus, software developers are beginning to play
a greater role in the design, architecture, and functionality of
medical devices. Tried and true software development methods
are also being woven into the overall product engineering
process. And the more flexible (some might say “agile”) those
methodologies are, the better. That’s because requirements
change more fluidly than ever before. Rigid requirements are a
thing of the past. While still widely used, waterfall methods can
no longer simply freeze requirements, create the corresponding
code, then test against the requirements and hope (often opti-
mistically) that the finished product maps to early expectations.
These methods must recognize that changes occur to require-
ments over the course of the life cycle, and adopt the appropriate
levels of flexibility in order to cope.

Rapid changes in supply chains and changes in requirements
midstream during a given product delivery cycle are causing
some degree of chaos for engineering teams, including software
development teams. Now, the IEC 62304 standard requires
traceability (the ability to ensure requirements map to each ele-
ment in the software code) in the software delivery process. But
as software teams working in this bold new world seek to adopt
agile techniques to better meet deadlines and expectations, they
are struggling to embrace the demand for traceability, which is
simply not the “sweet spot” for agile development.

So the question is, how do we introduce more rigor to the
development process and meet the needs of this new industry
standard?

What is so hard about software?

Coordinating people, processes, and tools is never easy. So why
does a greater role for the software component make the effort
even harder? The primary difficulty has to do with the nature of
software itself. While the best thing about software is that it is
soft (i.e., relatively easy to change), this is also its riskiest attrib-
ute. Unlike bridge construction, most software does not deal
with natural phenomena where laws of physics or materials pro-
vide a well-understood framework. Instead, most software is
constrained only by human imagination. The quality of software
is judged not by precise mathematics and physical tolerances, but
by the degree to which it satisfies a user’s expectations, which can
be highly subjective.

For these reasons, agile and iterative delivery methods enforce
frequent stakeholder review of the working software under
development, which helps guide software projects toward more
satisfactory outcomes. But, as noted earlier, software practition-
ers following the more “pure agile” methods—such as Scrum or
XP—may find that the new emphasis on requirements in IEC
62304 demands a more formal, less “agile-feeling” life cycle.
Pure agile methods need to be scaled up with additional guid-
ance from configuration and requirements management prac-
tices, at a minimum. Modeling your architecture is another great
way to scale up your process to the requirements expected of
TIEC 62304.

4 Challenges and opportunities for the medical device industry

The good news is that this standard doesn’t require a specific
software development and delivery process. You can use your
traditional “waterfall” methods if you like; you can use the
Unified Process (UP) or one of its flavors, such as the IBM®
Rational® Unified Process (RUP); or you can tailor your agile
development practices to conform to IEC 62304 requirements.

The following section discusses the best new approach for
handling the software component in modern medical devices,
especially in light of the IEC 62304 standard.

Disciplined agile delivery: Flexibility with
more structure

As many agile software development methodologists are quick to
point out, agile techniques were never meant as an excuse to be
undisciplined. Beginning with the agile manifesto in 2001, the
emphasis on results over process does not mean that following
the process is unimportant; rather it simply means that agile
teams keep the ultimate goal in mind, using frequent iterations
(stages during which functioning software can be tested and
demonstrated to stakeholders) and frequent course correction as
the project proceeds. At the same time, some of the “high cere-
mony” work flows used in more traditional methodologies—
such as architecture, configuration and change management,
and traceability—were set aside as cumbersome sub-processes
not needed by small, co-located teams working closely on an
hourly basis.

Over time, these agile methods—XP and Scrum are two of the
best known—proved successful, and more traditionally minded
software development organizations began to take notice of the
results that agile teams were achieving. Yet the problem was
clear: how do teams that need a little more discipline (for a vari-
ety of reasons such as culture, service level agreements, compli-
ance, safety, and contract restrictions) adopt agility to achieve
these same results? In many cases, these are larger teams who
must manage the scale of operations defined by a geographically
distributed workforce.

Enter Disciplined Agile Delivery (DAD). At its essence, DAD
provides teams of any size many of the benefits of traditional
methodologies while retaining the results-oriented spirit of agile
development. Of course, it will not always be the case that a
development team working on the software components for a
medical device will be a large team, but the traceability required
by the IEC 62304 standard demands more than a purely agile
approach, and DAD offers a solution. A full discussion of DAD!
is beyond the scope of this paper. But suffice it to say that the
overall quality management concerns introduced by the new the
IEC 62304 standard are addressed by DAD.

Meeting the specification: A look at some
of the details

"Traceability, reporting, architecture, requirements
management—all these “high ceremony” attributes of more
traditional iterative processes can be applied to a medical device

IBM Software 5

team’s agile software methods without slowing down the project.
"This additional rigor is what the IEC 62304 standard demands.
The real question becomes: what key elements do you need in
any process, and how are those elements linked together? This
section will discuss some of those elements. This is not a com-
prehensive list, but it covers several of the essential requirements
and how they affect software delivery teams. For a complete list
please refer to the actual IEC 62304 document.

The IEC 62304 standard states that requirements analysis

must be part of the software development process. The require-
ments analysis discipline establishes the high-level requirements
of the system being designed, then derives lower-level require-
ments from those untl the process produces requirements with
sufficient information to enable coding; these lower-level
requirements detail the complete system, including potential
faults and interfaces between systems. These can be developed
iteratively, in an agile process, but the IEC 62304 standard
demands that they must be documented. Requirements also
need to link to other phases of the process, including the soft-
ware architecture, test cases, and so forth. The general idea is
that someone can look at a requirement and understand what
should be implemented and what tests must be performed to
prove the requirements are met. Requirements typically are
written by systems engineers as simple text early in the design
process as they capture ideas on paper.

Another discipline required by an IEC 62304 guided process is
architectural design. This turns the requirements into a coherent
architecture so developers can understand how the requirement

will be met and ensure there aren’t any overlaps or holes in the
requirements as described. Graphical images often are used to
help development teams visualize an architecture emerging from
the requirements. The graphics should map to the actual code,
which provides the means for traceability from requirements all
the way to the code.

A key part of the overall process is failure mode and effect
analysis (FMEA). FMEA is a powerful tool for explaining the
potential failures to a regulatory agency. It shows how the identi-
fied failure points map to the requirements and the tests that
need to be run in order to prove that the failure can be handled
correctly. Fault Tree Analysis (FTA) is a graphical way to help
analyze the system to see where a failure is likely to occur.
Typically used during the early analysis phase of development,
FTA diagrams show how failures interrelate. FTA diagrams
combined with FMEA create a comprehensive strategy for iden-
tifying, understanding, and tracking potential failures.

Another important discipline is testing. The IEC 62304 standard
discusses both integration and system testing. Integration

testing can help ensure that different components actually work
together and do not cause unanticipated behaviors. System test-
ing treats the whole system like a black box and helps ensure that
high level requirements are met by the system itself. Each testing
discipline is critical for meeting the requirements of IEC 62304.
They also are quite useful for ensuring that your device works as
expected.

6 Challenges and opportunities for the medical device industry

While developing reports isn’t specifically listed as an IEC 62304
requirement, in the end a report is what needs to be sent to the
regulatory agencies. That report needs to contain all the infor-
mation listed above and explain how they trace between each
other to make a comprehensive whole software system for the
medical device.

Process steps for IEC 62304 compliance
The techniques described at the end of the previous section are
facilitated through software development tools specifically
geared for systems delivery, which is often divided into multiple
categories: systems engineering, project management, software

engineering, and test management, for example. These cate-
gories ideally interconnect across the systems delivery life cycle
in performing distinct tasks and creating distinct work products.

‘Typically, hardware and software teams today use similar
processes for development. The standard V diagram in

Figure 1 shows the typical stages both teams use for analysis,
design, implementation and testing. The challenge is that the
teams operate separately, limiting their ability to synchronize key
steps. What’s more, alignment is hindered by the use of different
languages and tools. 1o achieve rapid co-development and the
associated business benefits, the hardware and software processes
need to be integrated into a unified process.

Concept of ™

operations \

™
N

i

Requirements and B

architecture \\

N
N
e 5
.
Detailed ™\
design '\\

rd
/" Operation and
P4 maintenance
o
e d
i '.System verification
* and validation

"/
o / Integration, test
4 and verification

Figure 1: The typical stages both software and hardware teams use for analysis, design, implementation, and testing

IBM Software 7

This general, ideal process illustrated in Figure 1 provides a kind
of map for software and systems development teams to address
the needs of a standard such as IEC 62304. Some of this process
may be part of your current methods; some portions may be
clearly missing; and some may be unclear. The next section
describes how to go about your own gap analysis to determine
where you need to improve to meet the standard.

Performing the gap analysis

IEC 62304 compliance does not need to slow down your med-
ical device software development. But we do recommend that
you perform a gap analysis to see how closely your own process
maps to the specifications of IEC 62304. You may eventually
hire a third party to help you come into compliance with the
new standard, but you should do the gap analysis first, just to
take an inventory of your process and its typical artifacts. You
may find that your documented process isn’t the one you actually
follow in practice.

Get started by examining your process on paper. Of course, hav-
ing a consistent process across groups is helpful for management
to understand what is happening. But is this process truly the
one you are following? Be honest with yourself, and determine
if your departures from the stated process occur across all prod-
ucts, or only some. Try to determine where your software tools
are most helpful—where the integrations are strong and consis-
tent across the entire organization; and identify the areas for
improvement.

If you aren’t meeting your on-paper process, it could simply be
that it’s good in theory but difficult in practice. Compare both
to what the standard requires. Do you follow all the phases of
the standard? Do you have the required traceability between
the phases?

For example, IEC 62304 standard demands complete traceabil-
ity. Some organizations use a waterfall process, with traceability
only on paper linking requirements to specific locations in the
code. This type of tracing can become out of sync with the
actual code because, as discussed earlier, software code is by
nature “soft” and evolves as development goes on. Therefore,
you need some requirements management method that main-
tains a link to the actual code that addresses each requirement,
not simply a line number or some other meta reference.

In the classic waterfall process, requirements are created first,
and coding is expected to follow the requirements to the letter.
But you need to know how closely the actual code maps to those
requirements. Your team may have improved on this mode of
traceability with an agile process, which can demonstrate actual
requirements being met through frequent testing. Tools with the
ability to link through the architecture and support in context
help solve this problem, and there are a variety of approaches
you can adopt through tool and practice implementation.

8 Challenges and opportunities for the medical device industry

You can yourself, in most cases, undertake an initial comparison
between IEC 62304 specifications and your actual practices.

If necessary, you can then bring in a third party to review the
whole process and obtain recommendations for closing any gaps
discovered. A third party may recommend changes in your
process (even simplifications) as well as recommend specific tools
that a) offer strong collaboration across the software develop-
ment life cycle, and b) are specifically geared to support software
and systems delivery.

It is up to your organization to decide what works best, and
changes should be carefully considered both in light of the IEC
62304 specification as well as your product delivery culture and
history of success. The best tool solutions will be those that
assist with incremental adoption of new capabilities to help you
avoid wholesale process changes and massive new infrastructure
investments.

Let’s consider IBM’s approach to tooling that can help address
the critical needs for IEC 62304 compliance.

Choosing software tools for IEC 62304

With deep expertise in the design and deployment of embedded
software throughout the systems landscape, the IBM Rational
organization offers a proven solution to the tooling needs of
medical device manufacturers. While a combination of tools
from other vendors and open source providers can potentially
address some of the needs of software teams working in the
medical device arena, we will present in this section the advan-
tages of IBM’s comprehensive approach.

IBM Rational Solution for Systems and Software Engineering
Without integrations across the system delivery life cycle, sys-
tems software teams are left to operate in silos. When silos form,
product delivery effectiveness suffers. In order to deliver smarter
medical devices that respond to changing market needs and
standards, systems and software engineering teams must perform
efficiently and manage all the life-cycle work products through
collaboration. Figure 2 shows how the IBM Rational Solution
for Systems and Software Engineering provides this integrated
system life cycle management solution. (Note how the arrange-
ment of specific product capabilities in Figure 2 largely instant-
ates the workflow depicted in Figure 1.)

IBM Software 9

Use modeling to validate requirements,
architecture and design throughout the

development process

Rational
Rhapsody

Rational Quality

. 1
Rat I lll

DOORS

Manage all system requirements
with full traceability across Rational Team
the life cycle Concert

Manager

Achieve “quality by design”
with an integrated, automated
testing process

Collaborate across diverse engineering
disciplines and development teams

T3 k% S

Collaborate Automate

Best-of-breed capabilities integrated on a common platfor™

A~

o

Innovation through
Collaboration

Figure 2: 1BM Rational Solution for Systems and Software Engineering

The IBM Rational Solution for Systems and Software
Engineering offers a comprehensive life cycle management plat-
form that supports collaborative tasks and helps link the various
artifacts developed over the course of the product life cycle. This
solution also enacts system delivery workflows and provides task

management capabilities to effectively run the system delivery
project, and it is enhanced with support for safety, reliability, and
security analysis, mapping to CMMI maturity levels’, and sup-
ports medical standards IEC 61508 and IEC 62304.

10 Challenges and opportunities for the medical device industry

Using the specific product sets illustrated in Figure 2, the
IBM Rational Solution for Systems and Software Engineering
provides an integrated method for the following systems and

software engineering team roles:

Systems engineers. The IBM solution provides an integrated
and collaborative environment for requirements analysis,
architecture management, and work, change and configuration
management for teams of system engineers. The leading prod-
ucts are IBM Rational DOORS® software and IBM Rational
Rhapsody® software for system engineering tasks, integrated
with IBM Rational Team Concert™ software for life cycle
management of the work products. The integrations with
IBM Rational Quality Manager software provide for strong
collaboration with system validation teams from the start of
the project.

Safety engineers. This group focuses on safety requirements
and assurance. The primary products are Rational DOORS
software and Rational Rhapsody software with its Safety
Analysis Profile for identifying and classifying hazards, faults
and safety measures.

Reliability engineers. This group focuses on the reliability of
the system as measured through metrics such as MTBF and
availability. The primary products used here include Rational
DOORS software and Rational Rhapsody software, possibly in
addition to some spreadsheet templates provided with the
IBM Rational Harmony™ process content.

Project, development and test team leads. Rational Team
Concert software and Rational Quality Manager software pro-
vide work and plan management for system delivery teams
across the project life cycle and help with live transparency
through collaboration, automation, and reporting to the
system delivery work products and project health.

« Software engineers. With Rational Rhapsody software inte-
grated with Rational Team Concert software in the Eclipse
IDE, the IBM solution provides a software development
solution for software engineers. This integrates model driven
development using UML with the Rational Team Concert
software capabilities for team collaboratdon, such as model
configuration management, work items, change sets and con-
tinuous software build support. This solution also provides
traceability to upstream system engineering work products in
Rational DOORS software and Rational Rhapsody software,
or downstream traceability to system integration and
validation.

« Software and system testers. Rational Quality Manager
software provides a collaborative environment for test plan-
ning, construction and execution supporting continuous test-
ing as part of the software engineering teams, as well as test
management of system validation and acceptance testing.
IBM Rational Test Lab Manager software can help improve
the efficiency of system test labs and manage how resources
are requested and provided.

Integrations help provide collaboration and traceable
requirements

The IBM Rational Solution for Systems and Software
Engineering is integrated on the IBM Jazz™ platform for
collaborative software delivery. Uniquely attuned to global and
distributed teams, Jazz can help transform software delivery by
making it more collaborative, productive, and transparent. You
can think of Jazz as an extensible framework that dynamically
integrates people, processes, and assets associated with software
projects. Unlike the monolithic, closed solutions of the past, Jazz
is an open platform that supports the IBM Open Services for
Lifecycle Collaboration (OSLC) initiative’ for helping improve

IBM Software 11

tool interoperability. Products built on the Jazz platform can
leverage a rich set of capabilities for team-based software and
systems delivery.

Rational DOORS software provides a comprehensive require-
ments management capability for the IBM Rational Solution
for Systems and Software Engineering. It manages stakeholder
requirements, system requirements, and decomposed subsystem
requirements that engage stakeholders, system engineers,
software engineers and testers in a collaborative requirements
process.

"Together with the Rational Rhapsody and Rational Team
Concert applications, Rational DOORS software supports the
system engineering teams to capture and link system and stake-
holder requirements. Integrating with Rational Rhapsody soft-
ware, the system requirements are linked to elaboration and
specification of use-case and executable requirements models.

Rational Publishing Engine and Rational Insight software
The IBM Rational Publishing Engine application automates
the generation of documents, formal reviews, or regulatory com-
pliance and helps to improve productivity and reduce risk and
cost. Rational Publishing Engine software integrates with the
IBM Rational Solution for Systems and Software Engineering
and generates composite documents from the system life cycle
repositories. This powerful facility allows you to create custom
reports for submission to certification agencies. In essence, the
Rational Publishing Engine software can make life easier for
development teams, especially to sell across different countries
and regulatory agencies.

IBM Rational Insight software adds performance measurement
and analysis to the management and reporting solution, which
helps improve process performance through reports and
dashboards.

Conclusion

A developer immersed in the details of code recently written
may have a very clear sense of how that code addresses a specific
requirement. But even brilliant code that is not well-documented
won’t meet the specifications of IEC 62304, since a new level of
traceability between requirements and code is now demanded.
Yet, your brightest developers may detest the need to demon-
strate this traceability, since it has little to do with the ingenuity
they have brought to bear on their various coding assignments.
That’s why it is vital for your tools themselves to show these
connections automatically. This can alleviate manual reporting
and dramatically reduce the possibility of human error that
invariably is part of a manual process.

An improved process, based on the principles of agile develop-
ment and the added strengths of modeling, architecture, and
sophisticated requirements management capabilities, gives your
teams the process rigor needed to meet the IEC 62304 standard.
With automated reporting, this process also makes it far easier
for your sales teams or those in charge of handoffs within the
supply chain to demonstrate IEC 62304 compliance.

For more information

"To learn more about IBM Rational Solution for System and
Software Engineering for the medical device industry,
please contact your IBM marketing representative or

IBM Business Partner, or visit the following website:
ibm.com/software/rational/solutions/healthcare/

Additionally, financing solutions from IBM Global Financing
can enable effective cash management, protection from technol-
ogy obsolescence, improved total cost of ownership and return
on investment. Also, our Global Asset Recovery Services help
address environmental concerns with new, more energy-efficient

solutions. For more information on IBM Global Financing, visit:

ibm.com/financing

About the author

Martin Bakal is a senior business development manager with

IBM, specializing in embedded devices for a variety of industries.

He was formerly with the Modeling Division of Telelogic prior
to their acquisition by IBM. He has a BS in electrical engineer-
ing and an MS degree in engineering management, both from
Tufts University.

! For this full discussion, see Ambler and Lines, “Disciplined Agile
Delivery: An Introduction,” ibm.com/common/ssi/cgi-bin/ssialias?
infotype=SA&subtype=WH&appname=SWGE_RA_ZV_USEN&htmifid=
RAW14261USEN&attachment=RAW14261USEN.PDF

* For more information on the Capability Maturity Model Integration,
see the Software Engineering Institute’s website at
http://www.sei.cmu.edu/cmmi/

* For more on OSLC, see the white paper “The business value of open
collaboration” at ibm.com/common/ssi/fcgi-bin/ssialias?
infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&
htmlfid=RAW14207USEN&attachment=RAW14207USEN.PDF

— — — S—
— —— — S—
- - —e—
- — ———
- — o — -
- - . .
— — — W E—
——— 7 O

© Copyright IBM Corporation 2011

IBM Corporation Software Group
Route 100
Somers, NY 10589 USA

Produced in the United States of America
June 2011
All Rights Reserved

IBM, the IBM logo, ibm.com and Rational are trademarks or registered
trademarks of International Business Machines Corporation in the

United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a
trademark symbol (® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available
on the web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml

Other product, company or service names may be trademarks or service
marks of others.

The information contained in this documentation is provided for
informational purposes only. While efforts were made to verify the
completeness and accuracy of the information contained in this
documentation, it is provided “as is” without warranty of any kind, express or
implied. In addition, this information is based on IBM current product
plans and strategy, which are subject to change by IBM without notice.
IBM shall not be responsible for any damages arising out of the use of, or
otherwise related to, this documentation or any other documentation.
Nothing contained in this documentation is intended to, nor shall have the
effect of, creating any warranties or representations from IBM (or its
suppliers or licensors), or altering the terms and conditions of the applicable
license agreement governing the use of IBM software.

IBM customers are responsible for ensuring their own compliance with legal
requirements. It is the customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification and interpretation of any
relevant laws and regulatory requirements that may affect the customer’s
business and any actions the customer may need to take to comply with
such laws.

Qo
%& Please Recycle

RAW14268-USEN-00

http://www.ibm.com/software/rational/solutions/healthcare/
http://www.ibm.com/financing
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_ZV_USEN&htmlfid=RAW14261USEN&attachment=RAW14261USEN.PDF
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_ZV_USEN&htmlfid=RAW14261USEN&attachment=RAW14261USEN.PDF
http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_ZV_USEN&htmlfid=RAW14261USEN&attachment=RAW14261USEN.PDF
http://www.sei.cmu.edu/cmmi/
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlfid=RAW14207USEN&attachment=RAW14207USEN.PDF
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlfid=RAW14207USEN&attachment=RAW14207USEN.PDF
http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=SA&subtype=WH&appname=SWGE_RA_RA_USEN&htmlfid=RAW14207USEN&attachment=RAW14207USEN.PDF

	Untitled
	Challenges andopportunities for themedic
	Meeting the new IEC 62304 standard
	Executive summary
	Changes in the medical device ﬁeld
	What is so hard about software?
	Disciplined agile delivery: Flexibility
	Meeting the speciﬁcation: A look at some
	Process steps for IEC 62304 compliance
	Performing the gap analysis
	Choosing software tools for IEC 62304
	Integrations help provide collaboration
	Rational Publishing Engine and Rational
	Conclusion
	For more information
	About the author

